2024 के लिए बुनियादी चिकित्सा अल्बर्ट लास्कर पुरस्कार टेक्सास विश्वविद्यालय के साउथवेस्टर्न मेडिकल सेंटर के ज़िजियान ‘जेम्स’ चेन को दिया गया है। चेन ने अपने प्रयोगों से इस बाबत बुनियादी समझ विकसित की है कि आसपास फैले रोगजनकों के बीच हमारा शरीर सुरक्षित कैसे रहता है। इस समझ के औषधीय महत्व जो भी हों, लेकिन इसने प्रतिरक्षा को समझने में बहुत मदद की है।
उन्होंने इस बात का खुलासा किया है कि आनुवंशिक पदार्थ डीऑक्सी रायबोन्यूक्लिक एसिड (डीएनए) प्रतिरक्षा प्रतिक्रिया और शोथ को कैसे उकसाता है। उन्होंने दर्शाया है कि cGAS नामक एक एंज़ाइम उस क्रियाविधि का प्रमुख घटक होता है जिसका उपयोग स्तनधारी प्राणी सूक्ष्मजीवी घुसपैठियों से निपटने में करते हैं और यही एंज़ाइम ट्यूमर-रोधी प्रतिरक्षा को भी बढ़ावा देता है। अलबत्ता, कभी-कभी cGAS की अनुपयुक्त सक्रियता स्व-प्रतिरक्षा एवं शोथ सम्बंधी समस्याओं को भी जन्म देती है।
डीएनए की विविध भूमिकाएं
वैसे तो पाठ्यपुस्तकों में बताया जाता है कि डीएनए जेनेटिक सूचनाओं का वाहक होता है। लेकिन सच्चाई यह है कि यही डीएनए कई अन्य कार्यों को भी अंजाम देता है। सामान्यत: जंतुओं में डीएनए उनकी कोशिकाओं के केंद्रकों या माइटोकॉण्ड्रिया में बंद होता है। जब डीएनए इन कोशिकांगों के बाहर - यानी कोशिका द्रव्य में - मिले तो वह एक चेतावनी होती है कि या तो कोई सूक्ष्मजीवी मेहमान कोशिका में पहुंच गया है या दुर्दम (मैलिग्नेंट) कोशिकाएं उपस्थित हैं या कोई अन्य रोग-सम्बंधी स्थिति बन रही है।
जैसे, 1908 में नोबेल विजेता इल्या मेक्निकोव ने कहा था कि डीएनए सूक्ष्मजीवों को दूर रखने के लिए ‘भक्षी कोशिकाओं (फैगोसाइट्स) की रक्षात्मक फौज’ तैनात कर लेता है। लेकिन यह कोई नहीं जानता था कि यह काम होता कैसे है। इस कोशिकीय फौज में मूलत: जन्मजात (इन्नेट) प्रतिरक्षा तंत्र के घटक होते हैं। ये रोगजनक को देखते ही उसे निपटा देते हैं। साथ ही साथ ये अनुकूली प्रतिरक्षा तंत्र की ‘बी’ व ‘टी’ कोशिकाओं को सक्रिय कर देते हैं जो आगे की कार्रवाई करती हैं और जो कुछ देखती हैं उसे ‘याद’ रखती हैं।
2006 में शोधकर्ताओं ने दर्शाया कि यदि स्तनधारी कोशिकाओं के कोशिका द्रव्य में दोहरे सूत्र वाला यानी डबल स्ट्रेंडेड डीएनए (dsDNA) प्रविष्ट कराया जाए, तो उनमें जन्मजात प्रतिरक्षा तंत्र के घटकों की मात्रा में खूब वृद्धि हो जाती है। इन अणुओं में टाइप-1 इंटरफेरॉन (जैसे इंटरफेरॉन-β) शामिल होते हैं।
इस खोज के साथ ही कोशिका द्रव्य में dsDNA की शिनाख्त करके टाइप-1 इंटरफेरॉन का निर्माण शुरू करवाने वाले अणु की खोज शुरू हो गई। 2008 में अंतत: दो शोधकर्ताओं ने स्वतंत्र रूप से इंटरफेरॉन उत्पादन मार्ग के एक प्रमुख अणु की खोज कर ली। इस प्रोटीन को स्टिम्यूलेटर ऑफ इंटरफेरॉन जीन्स (स्टिंग) नाम दिया गया। अगले ही वर्ष पता चला कि इस प्रक्रिया की शुरुआत डीएनए करवाता है। एक दिक्कत यह थी कि पूरी प्रक्रिया में महत्वपूर्ण होते हुए भी स्टिंग स्वयं dsDNA से नहीं जुड़ता।
इसके बाद शुरू हुई अत्यंत कल्पनाशील प्रयोगों की एक शृंखला - ज़िजियान ‘जेम्स’ चेन के नेतृत्व में। चेन ने इस काम में जो तरीका अपनाया उसकी खासियत थी कि वे संभावित ग्राही की पहचान या गुणों को लेकर कोई मान्यता लेकर नहीं चले थे। वे तो सिर्फ एक ऐसे अणु की खोज में लगे थे जो वांछित कार्य - स्टिंग को सक्रिय करना - को अंजाम देता हो।
सबसे पहले तो उन्होंने कुछ चूहों की कोशिकाओं में स्टिंग को समाप्त कर दिया ताकि वे मात्र उसको सक्रिय करने वाले अणुओं को देख सकें, उसके बाद बनने वाले अणुओं को नहीं। dsDNA को इन स्टिंग-रहित कोशिकाओं में डाला गया और उसमें उपस्थित पदार्थों की जांच की। इस पदार्थ को उन्होंने अन्य कोशिकाओं में डाला और उनमें स्टिंग-सक्रियता का मापन किया। मापन के लिए उन्होंने एक ऐसे प्रोटीन की स्थिति को देखा जो स्टिंग के द्वारा निर्मित किया जाता है - IRF3 जो इंटरफेरॉन-β नियमनकर्ता है। 
उन कोशिकाओं से प्राप्त पदार्थ ने IRF3 का निर्माण करवाया। इससे चेन व साथियों को समझ में आ गया कि वे जिस पदार्थ की वे खोज कर रहे हैं, वह स्टिंग-रहित कोशिकाओं से प्राप्त मिश्रण में मौजूद है। उन्होंने इस मिश्रण के घटकों को अलग-अलग किया। पृथक्करण से उन्हें मनचाहा रसायन मिल ही गया।
आगे विश्लेषण से इस पदार्थ की पहचान हो गई - यह सायक्लिक GMP-AMP (cGAMP) किस्म का यौगिक था। इस तरह के अणु स्तनधारी कोशिकाओं में पहले कभी नहीं देखे गए थे। इस अणु में दो न्यूक्लिओटाइड (गुआनोसीन मोनो फॉस्फेट - GMP और एडिनोसीन मोनो फॉस्फेट- AMP) आपस में एक वृत्त के रूप में जुड़ जाते हैं। चेन ने यह खोज 2012 में प्रकाशित की थी और बताया था कि cGAMP में स्टिंग को सक्रिय करने के लिए समुचित गुण होते हैं। इस अणु का एक संश्लेषित संस्करण संवर्धित स्तनधारी कोशिकाओं में इंटरफेरॉन-β के निर्माण को प्रेरित करता है। यह भी देखा गया कि cGAMP का उत्पादन तभी बढ़ता है जब स्तनधारी कोशिका में किसी डीएनए वायरस का संक्रमण हुआ हो, जबकि आरएनए वायरस संक्रमित कोशिकाओं में ऐसा नहीं होता। इन प्रयोगों के आधार पर चेन का निष्कर्ष था कि कोशिका द्रव्य में डीएनए की उपस्थिति से एक प्रक्रिया शुरू होती है - cGAMP प्रकट होता है जो स्टिंग को उकसाता है, स्टिंग IRF3 को टाइप-1 इंटरफेरॉन व सम्बंधित जीन्स को सक्रिय करने को धकेलता है। 
इतना हो जाने के बाद चेन यह जानना चाहते थे कि वह कौन-सा एंज़ाइम है जो cGAMP का निर्माण करवाता है। इसके लिए उन्होंने ऐसी कोशिकाएं लीं जो डीएनए के उकसावे पर cGAMP बनाती हों। इनका चूर्ण बनाकर उनके घटकों को अलग-अलग कर लिया। फिर हर नमूने का परीक्षण किया कि क्या वह डीएनए की उपस्थिति में cGAMP बनवा सकता है। ऐसा कई बार करने के बाद चेन को तीन ऐसे प्रोटीन मिले जिनकी मात्रा उन नमूनों में अधिक होती थी जिनमें एंज़ाइम की सक्रियता भी सबसे अधिक दिखती थी।
इन तीन प्रोटीन में से एक का अनुमानित अमीनो अम्ल अनुक्रम खास तौर से रोमांचक था। यह एक अन्य एंज़ाइम 2´-5´-ओलिगोएडिनायलेट सिंथेज़ से मिलता-जुलता था। यह एंज़ाइम सायक्लिक AMP का निर्माण करवाता है। गौरतलब है कि सायक्लिक AMP एक संकेतक अणु है। चेन का तर्क था कि यह नया-नया खोजा गया प्रोटीन लगभग एडिनायलेट सायक्लेज़ के समान का काम करेगा; अंतर सिर्फ इतना होगा कि यह दो ATP को जोड़ने की बजाय एक GTP और एक ATP को जोड़कर cGAMP का निर्माण करवाएगा।
तब चेन ने इस प्रोटीन के लिए ज़िम्मेदार जीन पृथक किया जिसे उन्होंने नाम दिया है - GMP-AMP सिंथेज़ (cGAS)। वे यह भी दर्शा पाए कि cGAS का अति-उत्पादन उन कोशिकाओं में इंटरफेरॉन-β के निर्माण को प्रेरित करता है जिनमें स्टिंग उपस्थित हो। लेकिन स्टिंग न हो तो इसका कोई असर नहीं होता। यह भी देखा गया है कि इसके उन हिस्सों को बदल दिया जाए जो उत्प्रेरण के लिए महत्वपूर्ण हैं तो यह अपनी क्षमता गंवा देता है।
तरह-तरह से चेन ने दर्शाया है कि मानव तथा चूहा कोशिकाओं के कोशिका द्रव्य में डीएनए या वायरल डीएनए से संपर्क होने पर cGAMP के निर्माण तथा इंटरफेरॉन-β को उकसाने के लिए cGAS की उपस्थिति अनिवार्य है। वे यह भी पता लगा पाए हैं कि cGAS डीएनए से जुड़ जाता है और आगे की क्रियाएं संपन्न करवाता है।
कोशिका द्रव्य में डीएनए कई स्रोतों से आ सकता है। जैसे किसी सूक्ष्मजीव के साथ या केंद्रक अथवा माइटोकॉण्ड्रिया में से रिसाव के कारण। कोशिका द्रव्य में उपस्थित डीएनए cGAS से जुड़ जाता है और cGAMP का उत्पादन शुरू करवा देता है। यह cGAMP स्टिंग के ज़रिए TANK-बाइंडिंग काइनेज़ (TBK1) तथा IκB काइनेज़ नामक एंज़ाइमों को सक्रिय कर देता है। इसके बाद दो अन्य एंज़ाइम सक्रिय हो जाते हैं और दोनों केंद्रक में पहुंचकर शोथ को बढ़ावा देने वाले जीन्स को सक्रिय कर देते हैं। इनमें टाइप-1 इंटरफेरॉन का जीन भी होता है जो जन्मजात प्रतिरक्षा प्रणाली को उकसाता है। यह प्रतिक्रिया रोगजनक सूक्ष्मजीवों से तो बचाव करती है लेकिन कुछ मामलों में स्व-प्रतिरक्षा तकलीफों और शोथ सम्बंधी गड़बड़ियों का भी कारण बन सकती है।
चेन के इस काम ने एक नया अनुसंधान क्षेत्र खोल दिया। कुछ ही महीनों में चेन व अन्य वैज्ञानिकों ने cGAS की संरचना का खुलासा किया और यह भी पता कर लिया कि डीएनए उसे सक्रिय कैसे करता है। यह भी स्पष्ट हुआ कि cGAMP कैसे स्टिंग को सक्रिय कर देता है।
अपने काम को आगे बढ़ाते हुए चेन ने यह भी स्पष्ट किया कि cGAS→cGAMP→STING क्रियामार्ग सिर्फ डीएनए वायरसों को ही नहीं ताड़ता बल्कि एच.आई.वी. जैसे रिट्रोवायरसों को भी ताड़ लेता है। रिट्रोवायरसों की जेनेटिक सामग्री डीएनए के रूप में नहीं बल्कि आरएनए के रूप में होती है। मेज़बान कोशिका में प्रवेश के बाद वायरस के आरएनए को डीएनए में बदला जाता है। वैसे तो ये रिट्रोवायरस जन्मजात प्रतिरक्षा तंत्र को चकमा देने के लिए बदनाम हैं लेकिन कुछ फेरबदल एचआईवी को इस तरह बदल सकते हैं कि वह टाइप-1 इंटरफेरॉन व अन्य सम्बंधित अणुओं की हलचल पैदा कर सकता है। इनमें एक तरीका यह है कि वायरस के आवरण (कैप्सिड) को कमज़ोर बना दिया जाए। चेन ने दर्शाया कि कतिपय परिस्थितियों में cGAS एच.आई.वी. व अन्य रिट्रोवायरसों को भी ताड़ सकता है। इससे यह आशा पैदा हुई है कि cGAMP के उपयोग से एच.आई.वी. द्वारा प्रतिरक्षा तंत्र को चकमा देने की समस्या से बचाव संभव होगा।
चेन ने इन प्रयोगों को परखनलियों के अलावा वास्तविक जंतुओं में भी करके देखा। पता चला कि डीएनए वायरस से संक्रमित करने पर cGAS-रहित कृंतकों में इंटरफेरॉन आधारित प्रतिरक्षा प्रतिक्रिया निहायत कमज़ोर रही और अधिकांश मारे गए जबकि  जिन चूहों में cGAS सामान्य मात्रा में था, उनकी प्रतिरक्षा अधिक सुदृढ़ रही। cGAMP इंजेक्शन ने भी अच्छा असर दिखाया। इसका अर्थ है कि यह अणु एंटीबॉडी और टी-कोशिका प्रतिक्रिया को सुदृढ़ करता है।
धीरे-धीरे स्पष्ट हुआ है कि cGAS जंतुओं में डीएनए वायरस को ताड़कर जन्मजात प्रतिरक्षा को शुरू करवाता है। इस समझ के आधार पर न सिर्फ सूक्ष्मजीवी संक्रमण के खिलाफ लड़ाई के रास्ते खुले हैं बल्कि कैंसर से रक्षा की आशा भी जगी है।
शोथ को बढ़ावा
यह सही है कि जन्मजात प्रतिरक्षा तंत्र घुसपैठियों से निपटकर फायदा पहुंचाती है लेकिन इसका एक नकारात्मक पक्ष तब सामने आता है जब शरीर स्वयं पर आक्रमण करने लगता है। वैज्ञानिकों का अनुमान था कि इसका कारण एक एंज़ाइम Trex1 में गड़बड़ी से है। यह एंज़ाइम कोशिका द्रव्य में पाए गए डीएनए को नष्ट कर देता है। इन्हें स्व-प्रतिरक्षी रोग कहते हैं। इन रोगों में इंटरफेरॉन-प्रेरित जीन्स की अति सक्रियता देखी गई है। इन अध्ययनों से पता चलता था कि कोशिका द्रव्य में पाए गए डीएनए को नष्ट करने में असमर्थता इंटरफेरॉन क्रियामार्ग को सक्रिय कर देती है। जिन चूहों में Trex1 जीन नहीं होता उनमें इंटरफेरॉन-प्रेरित जीन अति-उत्तेजित हो जाता है और वे गंभीर शोथ के कारण जल्दी मर जाते हैं।
इस मामले में चेन ने 2015 में दर्शाया कि Trex1 विहीन चूहों में cGAS एंज़ाइम को हटा देने पर Trex1 की अनुपस्थिति के जानलेवा असर समाप्त हो जाते हैं। इससे स्पष्ट हुआ कि Trex1 की अनुपस्थिति में cGAS एंज़ाइम ही जानलेवा असर का पैदा करता है और यदि cGAS को रोक दिया जाए तो कुछ स्व-प्रतिरक्षा रोगों से बचाव हो सकता है।
स्व-प्रतिरक्षा तकलीफों के अलावा cGAS को शोथ सम्बंधी बीमारियों में भी लिप्त पाया गया है। इनमें उम्र के साथ आंखों में मैक्यूलर ह्रास, पार्किंसन, अल्ज़ाइमर और एमायोट्रॉफिक लेटरल स्क्लेरोसिस (एएलएस) जैसे रोग शामिल हैं। लिहाज़ा, cGAS→cGAMP→STING क्रियामार्ग को बाधित करके संभवत: इन रोगों पर काबू पाया जा सकेगा। 
इन संभावनाओं के मद्देनज़र कई दवा कंपनियां cGAS को बाधित करने के लिए दवाइयों की खोज में जुट गई हैं। लेकिन इस पक्ष पर भी ध्यान देना ज़रूरी है कि cGAS ही प्रतिरक्षा की प्रथम पंक्ति को तैनात करवाता है एवं ट्यूमर-रोधी प्रतिरक्षा में भी योगदान देता है। (स्रोत फीचर्स)